Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
285 changes: 285 additions & 0 deletions docs/handlers/mcp-server-prompts.mdx
Original file line number Diff line number Diff line change
@@ -0,0 +1,285 @@
---
title: MCP Server Prompts
sidebar_label: MCP Server Prompts
---

The MCP (Model Context Protocol) Server handler supports prompts in addition to
tools, enabling you to provide reusable, parameterized prompt templates through
the MCP protocol.

MCP prompts allow AI clients to request and execute structured prompt templates
with dynamic parameters, making it easy to standardize and share prompt patterns
and context across different AI workflows.

## Overview

Much like tools, Zuplo's MCP prompts work by utilizing structured API routes as
prompt generators that return formatted messages for AI consumption. When an MCP
client calls a prompt, your route handler returns a structured message array
that the AI can use directly.

But unlike MCP tools that perform actions and return data, MCP prompts return
formatted instructions or context that guide AI reasoning and responses.

## Configuration

### Route Configuration

Configure a route in your OpenAPI doc:

```json
{
"/greeting": {
"post": {
"operationId": "greeting",
"summary": "Generate a personalized greeting",
"description": "Creates a customized greeting for a given person",
"requestBody": {
"required": true,
"content": {
"application/json": {
"schema": {
"type": "object",
"properties": {
"name": {
"type": "string",
"description": "The name of the person to greet"
}
},
"required": ["name"]
}
}
}
},
"x-zuplo-route": {
"corsPolicy": "none",
"handler": {
"export": "default",
"module": "$import(./modules/greeting)"
}
}
}
}
}
```

To provide MCP specific metadata for the prompt, use `x-zuplo-mcp-prompt`:

```json
"x-zuplo-mcp-prompt": {
"name": "greeting_generator",
"description": "Utilize this prompt to generate a personalized greeting message"
},
```

The `x-zuplo-mcp-prompt` extension supports:

- `name` - The identifier for the MCP prompt
- `description` - Description of what the prompt generates

Without `x-zuplo-mcp-prompt`, the MCP server will use the route's `operationId`
as the prompt name and the `summary` as the prompt description.

### MCP Server Handler Configuration

Add prompt configuration to your MCP Server handler options:

```json
{
"paths": {
"/mcp": {
"post": {
"x-zuplo-route": {
"handler": {
"export": "mcpServerHandler",
"module": "$import(@zuplo/runtime)",
"options": {
"name": "example-mcp-server",
"version": "1.0.0",
"prompts": [
{
"path": "./config/routes.oas.json",
"operationIds": ["greeting"]
}
]
}
}
}
}
}
}
}
```

The `prompts` array supports:

- `path` - Path to the OpenAPI specification file containing prompt routes
- `operationIds` - Array of operation IDs to include as MCP prompts

## Route Handler Implementation

Your route handler must return a structured response with a `messages` array
containing properly formatted message objects:

```typescript
export default async function (request: ZuploRequest, context: ZuploContext) {
const { name } = await request.json();

return {
messages: [
{
role: "assistant",
content: {
type: "text",
text: `Create a personalized greeting for ${name}. Make it friendly and welcoming!`,
},
},
],
};
}
```

### Message Structure

Each message in the `messages` array should follow this structure:

- `role` - The role of the message (`"assistant"`, `"user"`, or `"system"`)
- `content` - The content object with:
- `type` - Content type (`"text"` for text content)
- `text` - The actual text content

For more information, review
[the `PromptMessage` type described in the MCP docs](https://modelcontextprotocol.io/specification/2025-06-18/server/prompts#promptmessage).

### Multiple Messages

You can return multiple messages to create complex and dynamic templates:

```typescript
return {
messages: [
{
role: "system",
content: {
type: "text",
text: "You are a helpful assistant that generates personalized greetings.",
},
},
{
role: "assistant",
content: {
type: "text",
text: `Create a warm greeting for ${name} in ${location}. Consider local customs and time of day.`,
},
},
],
};
```

## Testing MCP Prompts

### List Available Prompts

Use the MCP `prompts/list` method to see available prompts:

```bash
curl localhost:9000/mcp \
-X POST \
-H 'accept: application/json, text/event-stream' \
-d '{
"jsonrpc": "2.0",
"id": "1",
"method": "prompts/list"
}'
```

Response:

```json
{
"jsonrpc": "2.0",
"id": "1",
"result": {
"prompts": [
{
"name": "greeting_generator",
"description": "Generate a personalized greeting message for someone in a specific location",
"arguments": [
{
"name": "name",
"description": "The name of the person to greet",
"required": true
}
]
}
]
}
}
```

### Execute a Prompt

Use the MCP `prompts/get` method to execute a prompt with parameters:

```bash
curl localhost:9000/mcp \
-X POST \
-H 'accept: application/json, text/event-stream' \
-d '{
"jsonrpc": "2.0",
"id": "1",
"method": "prompts/get",
"params": {
"name": "greeting_generator",
"arguments": {
"name": "john"
}
}
}'
```

Response:

```json
{
"jsonrpc": "2.0",
"id": "1",
"result": {
"description": "Generate a personalized greeting message for someone in a specific location",
"messages": [
{
"role": "assistant",
"content": {
"type": "text",
"text": "Create a personalized greeting for john. Make it friendly and welcoming!"
}
}
]
}
}
```

## Best Practices

### Prompt Design

- Write clear, specific prompt instructions that guide AI behavior
- Use parameter interpolation to create dynamic, contextual prompts
- Include relevant context and constraints in your prompt text
- Consider the target AI model's strengths and prompt formatting preferences

### Parameter Schema

- Define comprehensive JSON schemas for prompt parameters - this _must_ appear
as a `application/json` request body in a `POST` to your route. Typically,
this will point to a module that programmatically can craft the prompt.
- Include helpful descriptions for each parameter
- Mark required parameters appropriately
- Use validation to ensure parameter quality

### Message Organization

- Use `system` messages for general behavior instructions
- Use `assistant` messages for specific task guidance
- Structure complex prompts as multiple focused messages
- Keep individual messages concise and purposeful
Loading
Loading