Skip to content

huggingface/trl-jobs

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

43 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🏭 TRL Jobs

TRL Jobs is a simple wrapper around Hugging Face Jobs that makes it easy to run TRL (Transformer Reinforcement Learning) workflows directly on 🤗 Hugging Face infrastructure.

Think of it as the quickest way to kick off Supervised Fine-Tuning (SFT) and more, without worrying about all the boilerplate setup.

📦 Installation

Get started with a single command:

pip install trl-jobs

⚡ Quick Start

Run your first supervised fine-tuning job in just one line:

trl-jobs sft --model_name Qwen/Qwen3-0.6B --dataset_name trl-lib/Capybara

The training is tracked with Trackio and the fine-tuned model is automatically pushed to the 🤗 Hub.

trackio_sft trained_model_sft

🛠 Available Commands

Right now, SFT (Supervised Fine-Tuning) is supported. More workflows will be added soon!

🔹 SFT (Supervised Fine-Tuning)

trl-jobs sft --model_name Qwen/Qwen3-0.6B --dataset_name trl-lib/Capybara

Required arguments

  • --model_name → Model to fine-tune (e.g. Qwen/Qwen3-0.6B)
  • --dataset_name → Dataset to train on (e.g. trl-lib/Capybara)

Optional arguments

  • --peft → Use PEFT (LoRA) (default: False)
  • --flavor → Hardware flavor (default: a100-large, only option for now)
  • --timeout → Max runtime (1h by default). Supports s, m, h, d
  • -d, --detach → Run in background and print job ID
  • --namespace → Namespace where the job will run (default: your user namespace)
  • --token → Hugging Face token (only needed if not logged in)

➡️ You can also pass any arguments supported by trl sft. E.g.

trl-jobs sft --model_name Qwen/Qwen3-0.6B --dataset_name trl-lib/Capybara --learning_rate 3e-5

For the full list, see the TRL CLI docs.

Dataset format

SFT supports various 4 dataset formats.

  • Standard language modeling

    example = {"text": "The sky is blue."}
  • Standard prompt-completion

    example = {"prompt": "The sky is", "completion": " blue."}
  • Conversationanl language modeling

    example = {"messages": [
        {"role": "user", "content": "What color is the sky?"},
        {"role": "assistant", "content": "It is blue."}
    ]}
  • Conversational prompt-completion

    example = {"prompt": [{"role": "user", "content": "What color is the sky?"}],
               "completion": [{"role": "assistant", "content": "It is blue."}]}

Important

When using conversational dataset, ensure that the model has a chat template.

Note

When using prompt-completion dataset, the loss is only computed on the completion part.

For more details, see the TRL docs - Dataset formats.

📊 Supported Configurations

Here are some ready-to-go setups you can use out of the box.

🦙 Meta LLaMA 3

Model Max context length Tokens / batch Example command
Meta-Llama-3-8B 4096 262,144 trl-jobs sft --model_name meta-llama/Meta-Llama-3-8B --dataset_name ...
Meta-Llama-3-8B-Instruct 4096 262,144 trl-jobs sft --model_name meta-llama/Meta-Llama-3-8B-Instruct --dataset_name ...

🦙 Meta LLaMA 3 with PEFT

Model Max context length Tokens / batch Example command
Meta-Llama-3-8B 24,576 196,608 trl-jobs sft --model_name meta-llama/Meta-Llama-3-8B --peft --dataset_name ...
Meta-Llama-3-8B-Instruct 24,576 196,608 trl-jobs sft --model_name meta-llama/Meta-Llama-3-8B-Instruct --peft --dataset_name ...

🐧 Qwen3

Model Max context length Tokens / batch Example command
Qwen3-0.6B-Base 32,768 65,536 trl-jobs sft --model_name Qwen/Qwen3-0.6B-Base --dataset_name ...
Qwen3-0.6B 32,768 65,536 trl-jobs sft --model_name Qwen/Qwen3-0.6B --dataset_name ...
Qwen3-1.7B-Base 24,576 98,304 trl-jobs sft --model_name Qwen/Qwen3-1.7B-Base --dataset_name ...
Qwen3-1.7B 24,576 98,304 trl-jobs sft --model_name Qwen/Qwen3-1.7B --dataset_name ...
Qwen3-4B-Base 20,480 163,840 trl-jobs sft --model_name Qwen/Qwen3-4B-Base --dataset_name ...
Qwen3-4B 20,480 163,840 trl-jobs sft --model_name Qwen/Qwen3-4B --dataset_name ...
Qwen3-8B-Base 4,096 262,144 trl-jobs sft --model_name Qwen/Qwen3-8B-Base --dataset_name ...
Qwen3-8B 4,096 262,144 trl-jobs sft --model_name Qwen/Qwen3-8B --dataset_name ...

🐧 Qwen3 with PEFT

Model Max context length Tokens / batch Example command
Qwen3-8B-Base 24,576 196,608 trl-jobs sft --model_name Qwen/Qwen3-8B-Base --peft --dataset_name ...
Qwen3-8B 24,576 196,608 trl-jobs sft --model_name Qwen/Qwen3-8B --peft --dataset_name ...
Qwen3-14B-Base 20,480 163,840 trl-jobs sft --model_name Qwen/Qwen3-14B-Base --peft --dataset_name ...
Qwen3-14B 20,480 163,840 trl-jobs sft --model_name Qwen/Qwen3-14B --peft --dataset_name ...
Qwen3-32B 4,096 131,072 trl-jobs sft --model_name Qwen/Qwen3-32B --peft --dataset_name ...

SmolLM3

Model Max context length Tokens / batch Example command
HuggingFaceTB/SmolLM3-3B-Base 28,672 114,688 trl-jobs sft --model_name HuggingFaceTB/SmolLM3-3B --dataset_name ...
HuggingFaceTB/SmolLM3-3B 28,672 114,688 trl-jobs sft --model_name HuggingFaceTB/SmolLM3-3B --dataset_name ...

🤖 OpenAI GPT-OSS (with PEFT)

🚧 Coming soon!

💡 Want support for another model?

Open an issue or submit a PR—we’d love to hear from you!

🔑 Authentication

You’ll need a Hugging Face token to run jobs. You can provide it in any of these ways:

  1. Login with huggingface-cli login
  2. Set the environment variable HF_TOKEN
  3. Pass it directly with --token

📜 License

This project is under the MIT License. See the LICENSE file for details.

🤝 Contributing

We welcome contributions! Please open an issue or a PR on GitHub.

Before committing, run formatting checks:

ruff check . --fix && ruff format . --line-length 119

About

Train LLM on Hugging Face infra

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages