-
Notifications
You must be signed in to change notification settings - Fork 62
Description
🐛 Describe the bug
I use the base example extract pdf
- I am using nvcr.io/nvidia/pytorch:24.07-py3 docker container
- I have installed last Anaconda version
- I have a OPEN AI key
- I am logged in huggingface (getting an other error if iI try with mistral for example)
Versions
PyTorch version: 2.5.0.dev20240724+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.4 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.30.0
Libc version: glibc-2.35
Python version: 3.10.14 (main, May 6 2024, 19:42:50) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.15.0-113-generic-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.5.82
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: GPU 0: NVIDIA H100 PCIe
Nvidia driver version: 550.90.07
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.2.1
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.2.1
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.2.1
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.2.1
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.2.1
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.2.1
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.2.1
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.2.1
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 52 bits physical, 57 bits virtual
Byte Order: Little Endian
CPU(s): 24
On-line CPU(s) list: 0-23
Vendor ID: AuthenticAMD
Model name: AMD EPYC 9334 32-Core Processor
CPU family: 25
Model: 17
Thread(s) per core: 1
Core(s) per socket: 24
Socket(s): 1
Stepping: 1
BogoMIPS: 5399.98
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm rep_good nopl cpuid extd_apicid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy svm cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw perfctr_core invpcid_single ssbd ibrs ibpb stibp vmmcall fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves avx512_bf16 clzero xsaveerptr wbnoinvd arat npt lbrv nrip_save tsc_scale vmcb_clean pausefilter pfthreshold v_vmsave_vmload vgif avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq la57 rdpid fsrm arch_capabilities
Virtualization: AMD-V
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 1.5 MiB (24 instances)
L1i cache: 1.5 MiB (24 instances)
L2 cache: 12 MiB (24 instances)
L3 cache: 384 MiB (24 instances)
NUMA node(s): 1
NUMA node0 CPU(s): 0-23
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Mitigation; safe RET
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines; IBPB conditional; IBRS_FW; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Versions of relevant libraries:
[pip3] pytorch-triton==3.0.0+dedb7bdf33
[pip3] torch==2.5.0.dev20240724+cu121
[conda] pytorch-triton 3.0.0+dedb7bdf33 pypi_0 pypi
[conda] torch 2.5.0.dev20240724+cu121 pypi_0 pypi