Skip to content

Commit 9bcab53

Browse files
committed
Merge commit for internal changes
2 parents 652ff74 + c539d7b commit 9bcab53

10 files changed

+54
-41
lines changed

docs/tutorials/canned_estimators.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -168,7 +168,7 @@
168168
"outputs": [],
169169
"source": [
170170
"csv_file = tf.keras.utils.get_file(\n",
171-
" 'heart.csv', 'http://storage.googleapis.com/applied-dl/heart.csv')\n",
171+
" 'heart.csv', 'http://storage.googleapis.com/download.tensorflow.org/data/heart.csv')\n",
172172
"df = pd.read_csv(csv_file)\n",
173173
"target = df.pop('target')\n",
174174
"train_size = int(len(df) * 0.8)\n",

docs/tutorials/custom_estimators.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -170,7 +170,7 @@
170170
"outputs": [],
171171
"source": [
172172
"csv_file = tf.keras.utils.get_file(\n",
173-
" 'heart.csv', 'http://storage.googleapis.com/applied-dl/heart.csv')\n",
173+
" 'heart.csv', 'http://storage.googleapis.com/download.tensorflow.org/data/heart.csv')\n",
174174
"df = pd.read_csv(csv_file)\n",
175175
"target = df.pop('target')\n",
176176
"train_size = int(len(df) * 0.8)\n",

docs/tutorials/keras_layers.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -170,7 +170,7 @@
170170
"source": [
171171
"# UCI Statlog (Heart) dataset.\n",
172172
"csv_file = tf.keras.utils.get_file(\n",
173-
" 'heart.csv', 'http://storage.googleapis.com/applied-dl/heart.csv')\n",
173+
" 'heart.csv', 'http://storage.googleapis.com/download.tensorflow.org/data/heart.csv')\n",
174174
"training_data_df = pd.read_csv(csv_file).sample(\n",
175175
" frac=1.0, random_state=41).reset_index(drop=True)\n",
176176
"training_data_df.head()"

docs/tutorials/premade_models.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -157,7 +157,7 @@
157157
"outputs": [],
158158
"source": [
159159
"csv_file = tf.keras.utils.get_file(\n",
160-
" 'heart.csv', 'http://storage.googleapis.com/applied-dl/heart.csv')\n",
160+
" 'heart.csv', 'http://storage.googleapis.com/download.tensorflow.org/data/heart.csv')\n",
161161
"df = pd.read_csv(csv_file)\n",
162162
"train_size = int(len(df) * 0.8)\n",
163163
"train_dataframe = df[:train_size]\n",

examples/canned_estimators_uci_heart.py

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -53,7 +53,8 @@ def main(_):
5353

5454
# UCI Statlog (Heart) dataset.
5555
csv_file = tf.keras.utils.get_file(
56-
'heart.csv', 'http://storage.googleapis.com/applied-dl/heart.csv')
56+
'heart.csv',
57+
'http://storage.googleapis.com/download.tensorflow.org/data/heart.csv')
5758
df = pd.read_csv(csv_file)
5859
target = df.pop('target')
5960
train_size = int(len(df) * 0.8)

examples/custom_estimators_uci_heart.py

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -44,7 +44,8 @@
4444
def main(_):
4545
# UCI Statlog (Heart) dataset.
4646
csv_file = tf.keras.utils.get_file(
47-
'heart.csv', 'http://storage.googleapis.com/applied-dl/heart.csv')
47+
'heart.csv',
48+
'http://storage.googleapis.com/download.tensorflow.org/data/heart.csv')
4849
df = pd.read_csv(csv_file)
4950
target = df.pop('target')
5051
train_size = int(len(df) * 0.8)

examples/keras_functional_uci_heart.py

Lines changed: 40 additions & 32 deletions
Original file line numberDiff line numberDiff line change
@@ -81,7 +81,8 @@
8181
def main(_):
8282
# UCI Statlog (Heart) dataset.
8383
csv_file = tf.keras.utils.get_file(
84-
'heart.csv', 'http://storage.googleapis.com/applied-dl/heart.csv')
84+
'heart.csv',
85+
'http://storage.googleapis.com/download.tensorflow.org/data/heart.csv')
8586
training_data_df = pd.read_csv(csv_file).sample(
8687
frac=1.0, random_state=41).reset_index(drop=True)
8788

@@ -126,8 +127,8 @@ def main(_):
126127
age_embedding = keras.layers.Embedding(
127128
input_dim=10,
128129
output_dim=len(lattice_sizes_for_embedding),
129-
embeddings_initializer=keras.initializers.RandomNormal(seed=1)
130-
)(age_input)
130+
embeddings_initializer=keras.initializers.RandomNormal(seed=1))(
131+
age_input)
131132
# Flatten to get rid of redundant tensor dimension created by embedding layer.
132133
age_embedding = keras.layers.Flatten()(age_embedding)
133134

@@ -140,8 +141,7 @@ def main(_):
140141
# will not collapse as result of multiplication.
141142
shape=(1, 2))
142143
age_ranged = keras.layers.multiply(
143-
[keras.activations.sigmoid(age_embedding),
144-
embedding_lattice_input_range])
144+
[keras.activations.sigmoid(age_embedding), embedding_lattice_input_range])
145145
lattice_inputs.append(age_ranged)
146146

147147
# ############### sex ###############
@@ -156,7 +156,8 @@ def main(_):
156156
output_max=lattice_sizes[2] - 1.0,
157157
# Initializes all outputs to (output_min + output_max) / 2.0.
158158
kernel_initializer='constant',
159-
)(sex_input)
159+
)(
160+
sex_input)
160161
lattice_inputs.append(sex_calibrator)
161162

162163
# ############### cp ###############
@@ -171,8 +172,8 @@ def main(_):
171172
output_max=lattice_sizes[3] - 1.0,
172173
monotonicity='increasing',
173174
# You can specify TFL regularizers as tuple ('regularizer name', l1, l2).
174-
kernel_regularizer=('hessian', 0.0, 1e-4)
175-
)(cp_input)
175+
kernel_regularizer=('hessian', 0.0, 1e-4))(
176+
cp_input)
176177
lattice_inputs.append(cp_calibrator)
177178

178179
# ############### trestbps ###############
@@ -182,8 +183,8 @@ def main(_):
182183
trestbps_calibrator = tfl.layers.PWLCalibration(
183184
# Alternatively to uniform keypoints you might want to use quantiles as
184185
# keypoints.
185-
input_keypoints=np.quantile(
186-
training_data_df['trestbps'], np.linspace(0.0, 1.0, num=5)),
186+
input_keypoints=np.quantile(training_data_df['trestbps'],
187+
np.linspace(0.0, 1.0, num=5)),
187188
dtype=tf.float32,
188189
# Together with quantile keypoints you might want to initialize piecewise
189190
# linear function to have 'equal_slopes' in order for output of layer
@@ -196,7 +197,8 @@ def main(_):
196197
clamp_min=True,
197198
clamp_max=True,
198199
monotonicity='increasing',
199-
)(trestbps_input)
200+
)(
201+
trestbps_input)
200202
lattice_inputs.append(trestbps_calibrator)
201203

202204
# ############### chol ###############
@@ -219,8 +221,8 @@ def main(_):
219221
# You can specify list of regularizers. You are not limited to TFL
220222
# regularizrs. Feel free to use any :)
221223
kernel_regularizer=[('laplacian', 0.0, 1e-4),
222-
keras.regularizers.l1_l2(l1=0.001)]
223-
)(chol_input)
224+
keras.regularizers.l1_l2(l1=0.001)])(
225+
chol_input)
224226
lattice_inputs.append(chol_calibrator)
225227

226228
# ############### fbs ###############
@@ -242,7 +244,8 @@ def main(_):
242244
# seed in order to simplify experimentation.
243245
kernel_initializer=keras.initializers.RandomUniform(
244246
minval=0.0, maxval=lattice_sizes[5] - 1.0, seed=1),
245-
)(fbs_input)
247+
)(
248+
fbs_input)
246249
lattice_inputs.append(fbs_calibrator)
247250

248251
# ############### restecg ###############
@@ -258,7 +261,8 @@ def main(_):
258261
# Categorical calibration layer supports standard Keras regularizers.
259262
kernel_regularizer=keras.regularizers.l1_l2(l1=0.001),
260263
kernel_initializer='constant',
261-
)(restecg_input)
264+
)(
265+
restecg_input)
262266
lattice_inputs.append(restecg_calibrator)
263267

264268
# Lattice inputs must be either list of d tensors of rank (batch_size, 1) or
@@ -274,22 +278,25 @@ def main(_):
274278
# Note that making embedding inputs monotonic does not make sense.
275279
lattice = tfl.layers.Lattice(
276280
lattice_sizes=lattice_sizes,
277-
monotonicities=['none', 'none', 'none', 'increasing', 'increasing',
278-
'increasing', 'increasing', 'increasing'],
281+
monotonicities=[
282+
'none', 'none', 'none', 'increasing', 'increasing', 'increasing',
283+
'increasing', 'increasing'
284+
],
279285
output_min=0.0,
280286
output_max=1.0,
281-
)(lattice_inputs_tensor)
287+
)(
288+
lattice_inputs_tensor)
282289

283-
model = keras.models.Model(
284-
inputs=model_inputs,
285-
outputs=lattice)
286-
model.compile(loss=keras.losses.mean_squared_error,
287-
optimizer=keras.optimizers.Adagrad(learning_rate=1.0))
290+
model = keras.models.Model(inputs=model_inputs, outputs=lattice)
291+
model.compile(
292+
loss=keras.losses.mean_squared_error,
293+
optimizer=keras.optimizers.Adagrad(learning_rate=1.0))
288294

289295
feature_names = ['age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg']
290-
features = np.split(training_data_df[feature_names].values.astype(np.float32),
291-
indices_or_sections=len(feature_names),
292-
axis=1)
296+
features = np.split(
297+
training_data_df[feature_names].values.astype(np.float32),
298+
indices_or_sections=len(feature_names),
299+
axis=1)
293300
target = training_data_df[['target']].values.astype(np.float32)
294301

295302
# Bucketize input for embedding.
@@ -302,12 +309,13 @@ def main(_):
302309
embedding_bins[-1] += 1.0
303310
features[0] = np.digitize(features[0], bins=embedding_bins)
304311

305-
model.fit(features,
306-
target,
307-
batch_size=32,
308-
epochs=FLAGS.num_epochs,
309-
validation_split=0.2,
310-
shuffle=False)
312+
model.fit(
313+
features,
314+
target,
315+
batch_size=32,
316+
epochs=FLAGS.num_epochs,
317+
validation_split=0.2,
318+
shuffle=False)
311319

312320

313321
if __name__ == '__main__':

examples/keras_sequential_uci_heart.py

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -75,7 +75,8 @@
7575
def main(_):
7676
# UCI Statlog (Heart) dataset.
7777
csv_file = tf.keras.utils.get_file(
78-
'heart.csv', 'http://storage.googleapis.com/applied-dl/heart.csv')
78+
'heart.csv',
79+
'http://storage.googleapis.com/download.tensorflow.org/data/heart.csv')
7980
training_data_df = pd.read_csv(csv_file).sample(
8081
frac=1.0, random_state=41).reset_index(drop=True)
8182

tensorflow_lattice/python/estimators_test.py

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -40,7 +40,8 @@ def setUp(self):
4040

4141
# UCI Statlog (Heart) dataset.
4242
heart_csv_file = tf.keras.utils.get_file(
43-
'heart.csv', 'http://storage.googleapis.com/applied-dl/heart.csv')
43+
'heart.csv',
44+
'http://storage.googleapis.com/download.tensorflow.org/data/heart.csv')
4445
heart_df = pd.read_csv(heart_csv_file)
4546
heart_target = heart_df.pop('target')
4647
heart_train_size = int(len(heart_df) * 0.8)

tensorflow_lattice/python/premade_test.py

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -103,7 +103,8 @@ def setUp(self):
103103

104104
# UCI Statlog (Heart) dataset.
105105
heart_csv_file = tf.keras.utils.get_file(
106-
'heart.csv', 'http://storage.googleapis.com/applied-dl/heart.csv')
106+
'heart.csv',
107+
'http://storage.googleapis.com/download.tensorflow.org/data/heart.csv')
107108
heart_df = pd.read_csv(heart_csv_file)
108109
heart_train_size = int(len(heart_df) * 0.8)
109110
heart_train_dataframe = heart_df[:heart_train_size]

0 commit comments

Comments
 (0)