Skip to content

Commit 6b77019

Browse files
committed
add week 41 data - closes #463
1 parent 0c9c6d9 commit 6b77019

File tree

7 files changed

+100196
-1
lines changed

7 files changed

+100196
-1
lines changed

README.md

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -162,6 +162,8 @@ Need a **reminder**? There are [extensions](https://chrome.google.com/webstore/d
162162
| 38 | `2022-09-20` | [Hydro Wastewater plants](data/2022/2022-09-20) | [Macedo et al, 2022](https://essd.copernicus.org/articles/14/559/2022/#section4) | [HydroWASTE v1.0](https://figshare.com/articles/dataset/HydroWASTE_version_1_0/14847786/1) |
163163
| 39 | `2022-09-27` | [Artists in the USA](data/2022/2022-09-27) | [arts.gov](https://www.arts.gov/impact/research/arts-data-profile-series/adp-31/data-tables) | [Artists in the Workforce](https://www.arts.gov/impact/research/arts-data-profile-series/adp-31) |
164164
| 40 | `2022-10-04` | [Product Hunt products](data/2022/2022-10-04) | [components.one](https://components.one/datasets/product-hunt-products) | [The Gamer and the Nihilist by Andrew Thompson](https://components.one/posts/gamer-and-nihilist-product-hunt) |
165+
| 41 | `2022-10-11` | [Ravelry data](data/2022/2022-10-11) | [ravelry.com](https://www.ravelry.com/account/login) | [{ravelRy} R package](https://www.kaylinpavlik.com/introducing-new-r-package-ravelry/) |
166+
165167

166168
***
167169

data/2022/2022-10-11/pic1.png

602 KB
Loading

data/2022/2022-10-11/pic2.png

360 KB
Loading

data/2022/2022-10-11/readme.md

Lines changed: 190 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,190 @@
1+
### Please add alt text to your posts
2+
3+
Please add alt text (alternative text) to all of your posted graphics for `#TidyTuesday`.
4+
5+
Twitter provides [guidelines](https://help.twitter.com/en/using-twitter/picture-descriptions) for how to add alt text to your images.
6+
7+
The DataViz Society/Nightingale by way of Amy Cesal has an [article](https://medium.com/nightingale/writing-alt-text-for-data-visualization-2a218ef43f81) on writing _good_ alt text for plots/graphs.
8+
9+
> Here’s a simple formula for writing alt text for data visualization:
10+
> ### Chart type
11+
> It’s helpful for people with partial sight to know what chart type it is and gives context for understanding the rest of the visual.
12+
> Example: Line graph
13+
> ### Type of data
14+
> What data is included in the chart? The x and y axis labels may help you figure this out.
15+
> Example: number of bananas sold per day in the last year
16+
> ### Reason for including the chart
17+
> Think about why you’re including this visual. What does it show that’s meaningful. There should be a point to every visual and you should tell people what to look for.
18+
> Example: the winter months have more banana sales
19+
> ### Link to data or source
20+
> Don’t include this in your alt text, but it should be included somewhere in the surrounding text. People should be able to click on a link to view the source data or dig further into the visual. This provides transparency about your source and lets people explore the data.
21+
> Example: Data from the USDA
22+
23+
Penn State has an [article](https://accessibility.psu.edu/images/charts/) on writing alt text descriptions for charts and tables.
24+
25+
> Charts, graphs and maps use visuals to convey complex images to users. But since they are images, these media provide serious accessibility issues to colorblind users and users of screen readers. See the [examples on this page](https://accessibility.psu.edu/images/charts/) for details on how to make charts more accessible.
26+
27+
The `{rtweet}` package includes the [ability to post tweets](https://docs.ropensci.org/rtweet/reference/post_tweet.html) with alt text programatically.
28+
29+
Need a **reminder**? There are [extensions](https://chrome.google.com/webstore/detail/twitter-required-alt-text/fpjlpckbikddocimpfcgaldjghimjiik/related) that force you to remember to add Alt Text to Tweets with media.
30+
31+
# Ravelry Yarn
32+
33+
The data this week comes from [ravelry.com](https://www.ravelry.com/yarns/) by way of [Alice Walsh](https://github.com/awalsh17).
34+
35+
Also see the [{ravelRy}](https://www.kaylinpavlik.com/introducing-new-r-package-ravelry/) R package by Kaylin Pavlik.
36+
37+
> Ravelry describes itself as a social networking and organizational tool for knitters, crocheters, designers, spinners, weavers and dyers.
38+
39+
### Get the data here
40+
41+
```{r}
42+
# Get the Data
43+
44+
# Read in with tidytuesdayR package
45+
# Install from CRAN via: install.packages("tidytuesdayR")
46+
# This loads the readme and all the datasets for the week of interest
47+
48+
# Either ISO-8601 date or year/week works!
49+
50+
tuesdata <- tidytuesdayR::tt_load('2022-10-11')
51+
tuesdata <- tidytuesdayR::tt_load(2022, week = 41)
52+
53+
yarn <- tuesdata$yarn
54+
55+
# Or read in the data manually
56+
57+
yarn <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2022/2022-10-11/yarn.csv')
58+
59+
```
60+
### Data Dictionary
61+
62+
# `yarn.csv`
63+
64+
|variable |class |description |
65+
|:-------------------------|:---------|:-----------|
66+
|discontinued |logical | discontinued true/false |
67+
|gauge_divisor |double | gauge divisor - The number of inches that equal min_gauge to max_gauge stitches |
68+
|grams |double | Unit weight in grams |
69+
|id |double | id |
70+
|machine_washable |logical | machine washable true/false |
71+
|max_gauge |double | max gauge - The max number of stitches that equal gauge_divisor |
72+
|min_gauge |double | min gauge - The min number of stitches that equal gauge_divisor |
73+
|name |character | name |
74+
|permalink |character | permalink |
75+
|rating_average |double | rating average - The average rating out of 5 |
76+
|rating_count |double | rating count |
77+
|rating_total |double | rating total |
78+
|texture |character | texture - Texture free text |
79+
|thread_size |character | thread size |
80+
|wpi |double | wraps per inch |
81+
|yardage |double | yardage |
82+
|yarn_company_name |character | Yarn company name |
83+
|yarn_weight_crochet_gauge |logical | Yarn weight crochet gauge - Crochet gauge for the yarn weight category |
84+
|yarn_weight_id |double | Yarn weight ID - Identifier for the yarn weight category |
85+
|yarn_weight_knit_gauge |character | Yarn weight knit gauge - Knit guage for the yarn weight category |
86+
|yarn_weight_name |character | Yarn weight name - Name for the yarn weight category |
87+
|yarn_weight_ply |double | Yarn weight ply - Ply for the yarn weight category |
88+
|yarn_weight_wpi |character | Yarn weight wraps per inch - Wraps per inch for the yarn weight category |
89+
|texture_clean |character | Texture clean - Texture with some light text cleaning |
90+
91+
### Cleaning Script
92+
93+
Clean script source: <https://github.com/awalsh17/ravelry_yarns>
94+
95+
```r
96+
# Call to ravelry API
97+
98+
library(dplyr)
99+
library(httr)
100+
library(jsonlite)
101+
102+
# get the information on 100,000 yarns -------
103+
# iterate over all pages (1000 results per) 100,000 total, api user/pass was saved to env
104+
105+
pages <- c(1:100)
106+
107+
resp <- purrr::map(pages, ~httr::GET(
108+
url = paste0("https://api.ravelry.com/yarns/search.json?sort=best&page_size=1000&page=", .x),
109+
authenticate(Sys.getenv("RAVELRY_API_USER"), Sys.getenv("RAVELRY_API_PASS"))))
110+
111+
# first item is the yarn data
112+
113+
yarn_all <- purrr::map_dfr(resp, ~fromJSON(content(.x, as = "text"))[[1]])
114+
115+
# second is the paginator - 100 pages
116+
117+
# write out raw
118+
119+
saveRDS(yarn_all, "data/yarn_raw.Rds")
120+
121+
# unnest the data frame, remove first_photo and personal_attributes
122+
123+
yarn_all <- tidyr::unnest(yarn_all, yarn_weight, names_sep = "_") %>%
124+
select(-first_photo, -personal_attributes)
125+
126+
# yarn_weight_min_gauge and yarn_weight_max_gauge are always missing
127+
128+
yarn_all <- select(yarn_all, -yarn_weight_max_gauge, -yarn_weight_min_gauge)
129+
130+
# clean the texture variable
131+
132+
yarn_all$texture_clean <- stringr::str_trim(yarn_all$texture)
133+
yarn_all$texture_clean <- stringr::str_to_lower(yarn_all$texture_clean)
134+
135+
# write out the final csv
136+
137+
write.csv(yarn_all, "data/yarn.csv", row.names = FALSE)
138+
139+
140+
141+
142+
# Query for more yarn information -----
143+
144+
# need to split request up into chunks of 100
145+
146+
chunks <- dplyr::ntile(1:100000, 1000)
147+
yarn_ids <- purrr::map(
148+
1:1000,
149+
~paste(unique(yarn_all$id)[chunks == .x], collapse = "+"))
150+
151+
resp <- purrr::map(
152+
yarn_ids,
153+
~httr::GET(url = paste0("https://api.ravelry.com/yarns.json?ids=", .x),
154+
authenticate(Sys.getenv("RAVELRY_API_USER"), Sys.getenv("RAVELRY_API_PASS"))))
155+
156+
yarn_json <- purrr::map(
157+
resp,
158+
~parse_json(content(.x, as = "text"), simplifyVector = TRUE)$yarns)
159+
yarn_json <- unlist(yarn_json, recursive = FALSE)
160+
161+
# yarn_fibers with have more than one row per yarn
162+
163+
yarn_fibers <- purrr::map_dfr(yarn_json, ~.x[["yarn_fibers"]], .id = "yarn_id") %>%
164+
tidyr::unnest(fiber_type, names_sep = "_") %>%
165+
select(-fiber_category, -id) %>%
166+
rename(id = yarn_id) # make primary key id for yarn
167+
168+
# yarn_attributes have more than one row per yarn (care, color, dye)
169+
170+
yarn_attributes <- purrr::map_dfr(yarn_json, ~.x[["yarn_attributes"]], .id = "yarn_id") %>%
171+
tidyr::unnest(yarn_attribute_group, names_sep = "_") %>%
172+
select(-id, -yarn_attribute_group_id) %>%
173+
rename(id = yarn_id) # make primary key id for yarn
174+
175+
# this has all the possible values for the yarn_attribute_group
176+
177+
yarn_attribute_groups <- httr::GET(
178+
url = "https://api.ravelry.com/yarn_attributes/groups.json",
179+
authenticate(Sys.getenv("RAVELRY_API_USER"), Sys.getenv("RAVELRY_API_PASS")))
180+
181+
yarn_attribute_groups <- fromJSON(content(yarn_attribute_groups, as = "text"))[[1]] %>%
182+
tidyr::unnest(yarn_attributes, names_sep = "_") %>%
183+
select(-children) # for construction attributes, just remove for here
184+
185+
# write out yarn_fibers and yarn_attributes
186+
187+
write.csv(yarn_fibers, "data/yarn_fibers.csv", row.names = FALSE)
188+
write.csv(yarn_attribute_groups, "data/yarn_attribute_groups.csv", row.names = FALSE)
189+
write.csv(yarn_attributes, "data/yarn_attributes.csv", row.names = FALSE)
190+
```

0 commit comments

Comments
 (0)