|
| 1 | +# Examples of Training scripts for Non-autoregressive Machine Translation models |
| 2 | + |
| 3 | +### Non-autoregressive Transformer (NAT, Gu et al., 2017) |
| 4 | +Note that we need to have an additional module to perform "length prediction" (`--length-loss-factor`) before generating the whole sequence. |
| 5 | +```bash |
| 6 | +fairseq-train \ |
| 7 | + data-bin/wmt14_en_de_distill \ |
| 8 | + --save-dir checkpoints \ |
| 9 | + --ddp-backend=no_c10d \ |
| 10 | + --task translation_lev \ |
| 11 | + --criterion nat_loss \ |
| 12 | + --arch nonautoregressive_transformer \ |
| 13 | + --noise full_mask \ |
| 14 | + --share-all-embeddings \ |
| 15 | + --optimizer adam --adam-betas '(0.9,0.98)' \ |
| 16 | + --lr 0.0005 --lr-scheduler inverse_sqrt \ |
| 17 | + --min-lr '1e-09' --warmup-updates 10000 \ |
| 18 | + --warmup-init-lr '1e-07' --label-smoothing 0.1 \ |
| 19 | + --dropout 0.3 --weight-decay 0.01 \ |
| 20 | + --decoder-learned-pos \ |
| 21 | + --encoder-learned-pos \ |
| 22 | + --pred-length-offset \ |
| 23 | + --length-loss-factor 0.1 \ |
| 24 | + --apply-bert-init \ |
| 25 | + --log-format 'simple' --log-interval 100 \ |
| 26 | + --fixed-validation-seed 7 \ |
| 27 | + --max-tokens 8000 \ |
| 28 | + --save-interval-updates 10000 \ |
| 29 | + --max-update 300000 |
| 30 | +``` |
| 31 | + |
| 32 | +### Non-autoregressive Transformer with Iterative Refinement (iNAT, Lee et al., 2018) |
| 33 | +Note that `--train-step` means how many iterations of refinement we used during training, and `--dae-ratio` controls the ratio of denoising auto-encoder training described in the original paper. |
| 34 | +```bash |
| 35 | +fairseq-train \ |
| 36 | + data-bin/wmt14_en_de_distill \ |
| 37 | + --save-dir checkpoints \ |
| 38 | + --ddp-backend=no_c10d \ |
| 39 | + --task translation_lev \ |
| 40 | + --criterion nat_loss \ |
| 41 | + --arch nonautoregressive_transformer \ |
| 42 | + --noise full_mask \ |
| 43 | + --share-all-embeddings \ |
| 44 | + --optimizer adam --adam-betas '(0.9,0.98)' \ |
| 45 | + --lr 0.0005 --lr-scheduler inverse_sqrt \ |
| 46 | + --min-lr '1e-09' --warmup-updates 10000 \ |
| 47 | + --warmup-init-lr '1e-07' --label-smoothing 0.1 \ |
| 48 | + --dropout 0.3 --weight-decay 0.01 \ |
| 49 | + --decoder-learned-pos \ |
| 50 | + --encoder-learned-pos \ |
| 51 | + --pred-length-offset \ |
| 52 | + --length-loss-factor 0.1 \ |
| 53 | + --train-step 4 \ |
| 54 | + --dae-ratio 0.5 \ |
| 55 | + --stochastic-approx \ |
| 56 | + --apply-bert-init \ |
| 57 | + --log-format 'simple' --log-interval 100 \ |
| 58 | + --fixed-validation-seed 7 \ |
| 59 | + --max-tokens 8000 \ |
| 60 | + --save-interval-updates 10000 \ |
| 61 | + --max-update 300000 |
| 62 | +``` |
| 63 | + |
| 64 | +### Insertion Transformer (InsT, Stern et al., 2019) |
| 65 | +Note that we need to specify the "slot-loss" (uniform or balanced tree) described in the original paper. Here we use `--label-tau` to control the temperature. |
| 66 | + |
| 67 | +```bash |
| 68 | +fairseq-train \ |
| 69 | + data-bin/wmt14_en_de_distill \ |
| 70 | + --save-dir checkpoints \ |
| 71 | + --ddp-backend=no_c10d \ |
| 72 | + --task translation_lev \ |
| 73 | + --criterion nat_loss \ |
| 74 | + --arch insertion_transformer \ |
| 75 | + --noise random_delete \ |
| 76 | + --share-all-embeddings \ |
| 77 | + --optimizer adam --adam-betas '(0.9,0.98)' \ |
| 78 | + --lr 0.0005 --lr-scheduler inverse_sqrt \ |
| 79 | + --min-lr '1e-09' --warmup-updates 10000 \ |
| 80 | + --warmup-init-lr '1e-07' --label-smoothing 0.1 \ |
| 81 | + --dropout 0.3 --weight-decay 0.01 \ |
| 82 | + --decoder-learned-pos \ |
| 83 | + --encoder-learned-pos \ |
| 84 | + --pred-length-offset \ |
| 85 | + --length-loss-factor 0.1 \ |
| 86 | + --apply-bert-init \ |
| 87 | + --log-format 'simple' --log-interval 100 \ |
| 88 | + --fixed-validation-seed 7 \ |
| 89 | + --max-tokens 8000 \ |
| 90 | + --save-interval-updates 10000 \ |
| 91 | + --max-update 300000 |
| 92 | +``` |
| 93 | + |
| 94 | + |
| 95 | +### Mask Predict (CMLM, Ghazvininejad et al., 2019) |
| 96 | +```bash |
| 97 | +fairseq-train \ |
| 98 | + data-bin/wmt14_en_de_distill \ |
| 99 | + --save-dir checkpoints \ |
| 100 | + --ddp-backend=no_c10d \ |
| 101 | + --task translation_lev \ |
| 102 | + --criterion nat_loss \ |
| 103 | + --arch cmlm_transformer \ |
| 104 | + --noise random_mask \ |
| 105 | + --share-all-embeddings \ |
| 106 | + --optimizer adam --adam-betas '(0.9,0.98)' \ |
| 107 | + --lr 0.0005 --lr-scheduler inverse_sqrt \ |
| 108 | + --min-lr '1e-09' --warmup-updates 10000 \ |
| 109 | + --warmup-init-lr '1e-07' --label-smoothing 0.1 \ |
| 110 | + --dropout 0.3 --weight-decay 0.01 \ |
| 111 | + --decoder-learned-pos \ |
| 112 | + --encoder-learned-pos \ |
| 113 | + --apply-bert-init \ |
| 114 | + --log-format 'simple' --log-interval 100 \ |
| 115 | + --fixed-validation-seed 7 \ |
| 116 | + --max-tokens 8000 \ |
| 117 | + --save-interval-updates 10000 \ |
| 118 | + --max-update 300000 |
| 119 | +``` |
| 120 | + |
| 121 | + |
| 122 | + |
| 123 | + |
| 124 | +### Levenshtein Transformer (LevT, Gu et al., 2019) |
| 125 | +```bash |
| 126 | +fairseq-train \ |
| 127 | + data-bin/wmt14_en_de_distill \ |
| 128 | + --save-dir checkpoints \ |
| 129 | + --ddp-backend=no_c10d \ |
| 130 | + --task translation_lev \ |
| 131 | + --criterion nat_loss \ |
| 132 | + --arch levenshtein_transformer \ |
| 133 | + --noise random_delete \ |
| 134 | + --share-all-embeddings \ |
| 135 | + --optimizer adam --adam-betas '(0.9,0.98)' \ |
| 136 | + --lr 0.0005 --lr-scheduler inverse_sqrt \ |
| 137 | + --min-lr '1e-09' --warmup-updates 10000 \ |
| 138 | + --warmup-init-lr '1e-07' --label-smoothing 0.1 \ |
| 139 | + --dropout 0.3 --weight-decay 0.01 \ |
| 140 | + --decoder-learned-pos \ |
| 141 | + --encoder-learned-pos \ |
| 142 | + --apply-bert-init \ |
| 143 | + --log-format 'simple' --log-interval 100 \ |
| 144 | + --fixed-validation-seed 7 \ |
| 145 | + --max-tokens 8000 \ |
| 146 | + --save-interval-updates 10000 \ |
| 147 | + --max-update 300000 |
| 148 | +``` |
0 commit comments