|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": null, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "from huggingface_hub import login\n", |
| 10 | + "import os\n", |
| 11 | + "import sys\n", |
| 12 | + "import csv\n", |
| 13 | + "from tqdm import trange\n", |
| 14 | + "from transformers import AutoModel,AutoTokenizer\n", |
| 15 | + "FILE_PATH = './QA_results_GT.csv'\n", |
| 16 | + "os.environ[\"OPENAI_API_KEY\"] = AAA" |
| 17 | + ] |
| 18 | + }, |
| 19 | + { |
| 20 | + "cell_type": "code", |
| 21 | + "execution_count": null, |
| 22 | + "metadata": {}, |
| 23 | + "outputs": [], |
| 24 | + "source": [ |
| 25 | + "ANA_FILE_PATH = './mthp_output.csv'\n", |
| 26 | + "\n", |
| 27 | + "naiveanswer_LIST = []\n", |
| 28 | + "lightraganswer_LIST = []\n", |
| 29 | + "minianswer_LIST = []\n", |
| 30 | + "QUESTION_LIST = []\n", |
| 31 | + "GA_LIST = []\n", |
| 32 | + "filelength = 0\n", |
| 33 | + "with open(ANA_FILE_PATH, mode='r', encoding='utf-8') as question_file:\n", |
| 34 | + " reader = csv.DictReader(question_file)\n", |
| 35 | + " for row in reader:\n", |
| 36 | + " QUESTION_LIST.append(row['Question'])\n", |
| 37 | + " GA_LIST.append(row['Gold Answer'])\n", |
| 38 | + " naiveanswer_LIST.append(row['naive'])\n", |
| 39 | + " lightraganswer_LIST.append(row['lightrag'])\n", |
| 40 | + " minianswer_LIST.append(row['minirag'])\n", |
| 41 | + " filelength = filelength+1" |
| 42 | + ] |
| 43 | + }, |
| 44 | + { |
| 45 | + "cell_type": "code", |
| 46 | + "execution_count": null, |
| 47 | + "metadata": {}, |
| 48 | + "outputs": [], |
| 49 | + "source": [] |
| 50 | + }, |
| 51 | + { |
| 52 | + "cell_type": "code", |
| 53 | + "execution_count": null, |
| 54 | + "metadata": {}, |
| 55 | + "outputs": [], |
| 56 | + "source": [ |
| 57 | + "PROMPT = \"\"\"\n", |
| 58 | + "Now, I'll give you a question, a gold answer to this question, and three answers provided by different students.\n", |
| 59 | + "\n", |
| 60 | + "Determine the answer according to the following rules:\n", |
| 61 | + "If the answer is correct, get 1 point.\n", |
| 62 | + "If the answer is irrelevant to the question, it will receive 0 points.\n", |
| 63 | + "If the answer is incorrect, get -1 point.\n", |
| 64 | + "\n", |
| 65 | + "Return your answer in JSON mode.\n", |
| 66 | + "\n", |
| 67 | + "For example:\n", |
| 68 | + "\n", |
| 69 | + "Question:\n", |
| 70 | + "When does Li Hua arrive to the city?\n", |
| 71 | + "\n", |
| 72 | + "Gold Answer:\n", |
| 73 | + "20260105\n", |
| 74 | + "\n", |
| 75 | + "Answer1: LiHua arrived on the afternoon of January 5th\n", |
| 76 | + "Answer2: Sorry, there is no information about LiHua's arrival in the information you provided\n", |
| 77 | + "Answer3: There is no accurate answer in the information you provided, but according to the first information found, LiHua arrived on April 17th\n", |
| 78 | + "\n", |
| 79 | + "output:\n", |
| 80 | + "{{\n", |
| 81 | + "\"Score1\": 1,\n", |
| 82 | + "\"Score2\": 0,\n", |
| 83 | + "\"Score3\": -1,\n", |
| 84 | + "}}\n", |
| 85 | + "\n", |
| 86 | + "\n", |
| 87 | + "\n", |
| 88 | + "Real data:\n", |
| 89 | + "\n", |
| 90 | + "Question:\n", |
| 91 | + "{question}\n", |
| 92 | + "Gold Answer:\n", |
| 93 | + "{ga}\n", |
| 94 | + "\n", |
| 95 | + "Answer1: {naive}\n", |
| 96 | + "Answer2: {light}\n", |
| 97 | + "Answer3: {mini}\n", |
| 98 | + "\n", |
| 99 | + "output:\n", |
| 100 | + "\n", |
| 101 | + "\"\"\"" |
| 102 | + ] |
| 103 | + }, |
| 104 | + { |
| 105 | + "cell_type": "code", |
| 106 | + "execution_count": null, |
| 107 | + "metadata": {}, |
| 108 | + "outputs": [], |
| 109 | + "source": [ |
| 110 | + "#deepseek\n", |
| 111 | + "from openai import OpenAI\n", |
| 112 | + "chatbot = OpenAI(api_key=My_deepseek_key, base_url=\"https://api.deepseek.com\")\n", |
| 113 | + "\n", |
| 114 | + "chat_list = []\n", |
| 115 | + "for i in range(filelength):\n", |
| 116 | + " p = PROMPT.format(question = QUESTION_LIST[i], ga = GA_LIST[i], naive = naiveanswer_LIST[i], light = lightraganswer_LIST[i], mini = minianswer_LIST[i])\n", |
| 117 | + " chat_completion = chatbot.chat.completions.create(\n", |
| 118 | + " messages=[\n", |
| 119 | + " {\n", |
| 120 | + " \"role\": \"system\",\n", |
| 121 | + " \"content\":p,\n", |
| 122 | + " },\n", |
| 123 | + " \n", |
| 124 | + "\n", |
| 125 | + " ],\n", |
| 126 | + " model=\"deepseek-chat\",\n", |
| 127 | + " stream = False\n", |
| 128 | + " )\n", |
| 129 | + " chat_list.append(chat_completion.choices[0].message.content.strip())" |
| 130 | + ] |
| 131 | + }, |
| 132 | + { |
| 133 | + "cell_type": "code", |
| 134 | + "execution_count": null, |
| 135 | + "metadata": {}, |
| 136 | + "outputs": [], |
| 137 | + "source": [ |
| 138 | + "#openai\n", |
| 139 | + "from openai import OpenAI\n", |
| 140 | + "from tqdm import trange\n", |
| 141 | + "chatbot = OpenAI()\n", |
| 142 | + "chat_list = []\n", |
| 143 | + "for i in trange(filelength):\n", |
| 144 | + " p = PROMPT.format(question = QUESTION_LIST[i], ga = GA_LIST[i], naive = naiveanswer_LIST[i], light = lightraganswer_LIST[i], mini = minianswer_LIST[i])\n", |
| 145 | + " chat_completion = chatbot.chat.completions.create(\n", |
| 146 | + " messages=[\n", |
| 147 | + " {\n", |
| 148 | + " \"role\": \"system\",\n", |
| 149 | + " \"content\":p,\n", |
| 150 | + " },\n", |
| 151 | + " ],\n", |
| 152 | + " model=\"gpt-4o\",\n", |
| 153 | + " )\n", |
| 154 | + " chat_list.append(chat_completion.choices[0].message.content.strip())\n" |
| 155 | + ] |
| 156 | + }, |
| 157 | + { |
| 158 | + "cell_type": "code", |
| 159 | + "execution_count": null, |
| 160 | + "metadata": {}, |
| 161 | + "outputs": [], |
| 162 | + "source": [ |
| 163 | + "import json\n", |
| 164 | + "import json_repair\n", |
| 165 | + "chat_score_list = [] \n", |
| 166 | + "for chat in chat_list:\n", |
| 167 | + " try:\n", |
| 168 | + " data = json_repair.loads(chat.strip('```json').strip('```'))\n", |
| 169 | + " chat_score_list.append(data)\n", |
| 170 | + " except:\n", |
| 171 | + " chat_score_list.append(0)\n", |
| 172 | + " print('Error in chat:', chat)\n", |
| 173 | + "\n", |
| 174 | + "all_score1 = [data['Score1'] for data in chat_score_list]\n", |
| 175 | + "all_score2 = [data['Score2'] for data in chat_score_list]\n", |
| 176 | + "all_score3 = [data['Score3'] for data in chat_score_list]\n", |
| 177 | + "\n", |
| 178 | + "all_score1_1 = all_score1.count(1)\n", |
| 179 | + "all_score1_0 = all_score1.count(0)\n", |
| 180 | + "all_score1_neg = all_score1.count(-1)\n", |
| 181 | + "\n", |
| 182 | + "all_score2_1 = all_score2.count(1)\n", |
| 183 | + "all_score2_0 = all_score2.count(0)\n", |
| 184 | + "all_score2_neg = all_score2.count(-1)\n", |
| 185 | + "\n", |
| 186 | + "all_score3_1 = all_score3.count(1)\n", |
| 187 | + "all_score3_0 = all_score3.count(0)\n", |
| 188 | + "all_score3_neg = all_score3.count(-1)\n", |
| 189 | + "\n", |
| 190 | + "all = len(all_score1)\n", |
| 191 | + "print(all_score1_1, all_score1_0, all_score1_neg)\n", |
| 192 | + "print(all_score2_1, all_score2_0, all_score2_neg)\n", |
| 193 | + "print(all_score3_1, all_score3_0, all_score3_neg)\n", |
| 194 | + "\n", |
| 195 | + "print(f\"Score1 1: {all_score1_1 / all * 100:.2f}\\%, Score1 0: {all_score1_0 / all * 100:.2f}\\%, Score1 -1: {all_score1_neg / all * 100:.2f}\\%\") \n", |
| 196 | + "print(f\"Score2 1: {all_score2_1 / all * 100:.2f}\\%, Score2 0: {all_score2_0 / all * 100:.2f}\\%, Score2 -1: {all_score2_neg / all * 100:.2f}\\%\")\n", |
| 197 | + "print(f\"Score3 1: {all_score3_1 / all * 100:.2f}\\%, Score3 0: {all_score3_0 / all * 100:.2f}\\%, Score3 -1: {all_score3_neg / all * 100:.2f}\\%\")" |
| 198 | + ] |
| 199 | + } |
| 200 | + ], |
| 201 | + "metadata": { |
| 202 | + "kernelspec": { |
| 203 | + "display_name": "Tianyu_agent", |
| 204 | + "language": "python", |
| 205 | + "name": "python3" |
| 206 | + }, |
| 207 | + "language_info": { |
| 208 | + "name": "python", |
| 209 | + "version": "3.9.19" |
| 210 | + } |
| 211 | + }, |
| 212 | + "nbformat": 4, |
| 213 | + "nbformat_minor": 2 |
| 214 | +} |
0 commit comments